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Abstrad The e l e c ! ” c  smrcfure of molecular orbitals is calculated analytically, with the 
effects of electron-phonon interaction. and. wnsequently, two kinds of bond length, taken into 
acwunt 

1. Introduction 

The success in synthesizing macroscopic quantities of solid C, [l] and the discovery of the 
superconductivity of its alloy compounds [2] have spurred great interest in the structural and 
electronic properties of the C, molecule. Recently, Friedberg and co-workers [3] proposed 
an analytic approach to the calculation of the electronic structure of the YZ e lec t“  in 
neutral C,, using the well known SO(3) group to represent the symmetry group of C,, I*, 
and to diagonalize the TEA molecular Hamiltonian. 

However, within their calculation, one unique bond length of GO was assumed, which 
is inconsistent with the experimental observation showing two different bond lengths in the 
neutral C, molecule [4]. The appearance of two kinds of bond length can be explained 
naturally within the theory of the electron-phonon (e-ph) interaction, as in the literature of 
conducting polymers [5 ] .  In this paper, using the approach of Friedberg and co-workers, 
we have investigated analytically the effects of the e-ph interaction and, consequently, two 
kinds of bond lengths on the electronic structure. 

2. Icosahedral symmetry 

The structure of the molecule C, has been determined explicitly thmugh well known 
experiments 161. There are 12 pentagons and U) hexagons in GO. which correspond to the 
12 vertices and 20 faces of an icosahedron representing the proper icosahedral symmetry, I. 
The 120element icosahedral point group of &,, I,,. is the cross product of the 6Oelement 
icosahedral rotation group I and the inversion group C,, i.e. Ih = I @ C,. The inversion 
group CI contains only the unit operator and the inversion operator, both of which commute 
with the 60 proper rotations in 1. Thus the elements of the full I,, are generated by fimt 
operating on all the rotations of I with the unit operator of Cl, replicating the class s t r u m  
of I. Then all the proper rotations of I are multiplied with the inversion of C,, creating 60 
new improper rotations. There are 15, 10 and six twofold, threefold and fivefold symmetry 
axes, respectively, in the icosahedron. The proper rotation of I is divided into five classes, 
i.e. E, 12C5, 12C:. 2OC3 and 15C~. Therefore, there are five irreducible representations 
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(IRS) in I .  The multiplication table and character table have been given by Harter and 
Week [7]. 

According to [3] the proper icosahedral group I is a subgroup of S0(3), therefore ow 
knowledge of SO(3) can be used to represent I, and then to d u c e  the representations of 
SO(3) according to I. The correspondence relation of the spherical harmonics &,,@, r$) of 
SO(3) and the IR of I has been given in [3]. Then the IR and its basis of A, TI and H 
subspaces can be readily identified with the usual results of SO(3) for I = 0, 1, 2. But the 
I = 3 IR of SO(3) needs further decomposition into a quartet G and another triplet Ts. On 
the other hand, the one-to-one correspondence between the 60 elements of the I group and 
the 60 carbon atoms of the C a  molecule can be proposed to define a regular representation 
(RR) of I; meanwhile, the reduction coefficients of the RR according to the IR of Ib can be 
obtained 131. 

3. Molecular orbitals of CM 

Within the molecular orbital theory, the SSH-like Hamiltonian of &, can be written as 181 

where c!,(cj J are electron creation (annihilation) operators at site i of a C atom with spin 
s. The first term represents the electronic hopping term, where (i, j )  means summation 
over the nearest-neighbour C atoms. The hopping integral is expanded up to a linear term 
proportional to the length deviation from 11, where 1j.j is the distance between i and j 
atoms, and (I describes the strength of inter-site elecmn-phonon coupling. The other terms 
describe elastic potential energies: K is the stiffness constant of the bond-stretching spring; 
11 is the length at which all springs are relaxed. It is convenient to introduce dimensionless 
parameters 

and to measure energy in units of fo, i.e. H/to  + H. To keep basic icosahedral symmetry 
in the ground state, we assume all the bond lengths 6j.j between a pentagon and a hexagon 
are equal, 6j.j = AL. and the bond lengths a;., between two hexagons are equal as well, 
6i.j = 8,. In the undoped case, the bond length 6~ is greater than 6,. as will be seen below: 
we call SL the long bond and 6, the short bond. Thus, the Hamiltonian can be rewritten as 

30 2 + -(& -61) . 2xA (3) 

The symbol ( 5 , 6 )  means the summarion is taken over all the bonds separating a hexagon 
from a pentagon and the symbol {6,6) means the summation is taken over all the bonds 
separating two hexagons. There are in total 60 (5.13 bonds and 30 {6,6) bonds. Letting 

I 1 - f(8, - 6,) 
1 - &(Ss - 61) r = 1 - ~ ( s , - 6 ~ )  (4) 
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and using icosahedral group element g to label the site i of the C atom, we get the electronic 
part of the Hamiltonian as 

H = sH‘ H’ = ~ t g g ‘ ( c ~ c g ‘  + circg) 
RR‘ 

and 

tgg‘ = (gIH’lg’) = - I  for a bond (g, g’) between two hexagons (6) 
-U for a bond (g, g‘) between a hexagon and a pentagon 

[ o  otherwise. 

Following [31, define a new basis Id, mA) in terms of the IR of I as 

(gld.mA) E $T,A(% A Y )  Q 

where d = I, 3, 3.4 and 5 is the dimension of the IR and C = 60 is the dimensionality of 
the RR. The unitary condition of the above transformation is 

x ( d .  mhlg) (gld’. ”A’) = 8dddmm&, 

For d = 1, 3 and 5, the matrices T/A(or,,5’.y) are simply the standard transformation 
matrices in a rigid body, i.e. the IR matrices of SO(3).  CY, p, y )  = DL,(u, ,S, y )  with 
J = ‘(d 2 - I). For d = ?. and 4, the mamces TiA result from the block diagonalization of 
D i A  with J = 3 according to the I group. Therefore, with the new basis Id, mA), we have 
the matrix element of the Hamiltonian transformed to 

(d ,  mAlH’Id’, ”A’) = mAlg)(gIH’Ig’)(g’ld’, m’A’) 

= - x ( d ,  mAlg)(gfld‘, ”A’)  - d x ( d ,  mAlg)(gfbld’, ”A’) 
RR’ 

R b.8 

Here g‘ = gfo(bl.  where fotb, is the proper rotation a or b to rotate g to its nearest 
neighbours through (6,6) and {S, 6) bonds, respectively. We have used the relation in (7) 
and (8). Letting 

the eigenvalue problem of the model Hamiltonian can be solved through the diagonalization 
of the low-dimensional matrices Md of the above equation. For the A, representation, we 
can immediately obtain its eigenvalue E = -1 -2a from (IO). In practice, it turns out that 
we need only to diagonalize no more than 3x3 matrices after further block diagonalization 
through the SU(2) representation, which can readily be done analytically. 
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Here we take the decomposition for the 1 = 3 representation of SO(3) according to 
1. The basic functions for the I = 3 representation of SO(3) can be redefined so that 
the representation will be decomposed into G @ T3, according to icosahedral symmetry I 
mentioned in section 2 

The above basic functions can be further redefined in terms of real variables: 

1 1 

i i 

1 1 

GI = -(G-2 + G2) G2 --(G-I - G I )  Jz Jz 
Jz 
Jz 2 -  

(12) G3 = -(G-I + G I )  G4 = - 3 ( G - 2  - GZ) 

I; = -(El +Ti) I; = To Zj = --(T 1 -Ti). 

The M matrix in the G representation then becomes 

0 
0 ' ) (13) 

3 -3-2ncosF 2 
+ - 25 c o s y  

M = [  5 0 0 -20 cos < -1 
0 0 -1 -25 cos 2F 

and the M matrix in the T3 representation is 

(14) 1 .=( -5 5-2. 0 

1 M = (  -5 -3-2. 0 

- ~ - 2 a c o s y  -5 0 

0 1 - 2 5 c o s g  0 

where 5 = 2 ~ / 5 .  We also notice that cost  = t(8- 1) and c o s y  = -i(,6+ 1). 

obtained; respectively, they are 
Similarly, the M matrices in the 7i representation and the H representation are easily 

(15) 

0 
0 1. 

0 ~ - 2 5 c o s z .  -- 2 
43 

0 0 1 -2€rcos{ 

-_ -a 0 5 25cosy 5 5 

-- - 2 4 3  L - 2 5  0 0 

2 -- - 
0 -_ 2 -- 2 - 2 5 c o s ~  q 

0 0 0 -% -& - 25 c o s g  

M = [  2% 0 5 
0 5 5 0 $-2ncos2' -5 

(16) 
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2k + 
b 

"D. 

b "m 

- +  + ' I :  
? = .  - - J L  
--*1 N -* -* -e+ 

I +  



5856 Chui-Lin Wang et a1 

The solutions of the eigenvalue problems for (13x16) are. given in table 1. In table 1, 
we list eigenvalues e of the M matrix at U # 1 as well as U = 1. The M matrices are. block 
matrices of the electronic part of the Hamiltonian H', so the eigenvalues for the original 
Hamiltonian H should be tore. Eigenvectors *o of the M mahices are also listed in table 1. 
For clarity, we take the second row as an illustrative example. The eigenvalue for the G, 
representation is E = j (u + d5u2 + 8u +4); when U = 1 it reduces to U = $(I +an. 
The eigenvector $0 of G, has four components 

I 

where 

The wavefunction of H can be obtained through the formula 

F 

which can be easily verified to satisfy the orthogonal relations 

wp(&')wf!'@) = &&?'Sdd'. 
8 

For the G. representation, as an example, we can obtain four degenerate wavefunctions 
corresponding to the eigenvalue E = :(U + J5uz + 80 +4) through (17). 

4. Self-consistent solutions 

In section 3, we have solved the eigenvalue problems of the M matrices in terms of the 
parameters U and r. The values of these parameters can be determined by a Bogoliubov- 
de Gennes (BdG) equation [5] for a given dimensionless e-ph coupling constant k 

where W x  is a multi-electron state of the system. Sice we only have two kinds of bond 
length, 6, and 6~ in our case, we can only get two equations from (19): 

where the summation over (d )  is taken over the occupied representation. In the undoped 
case, 30 energy !evels from the lowest A, state to the HOMO ff, states are. occupied. The 
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factor of two for spin is already taken out from the summations. The expressions for ed, 
@& and Md can be found in table 1 and (13H16). Equation (20) is a system of non-hear 
equations of two variables, which cannot be solved analytically. A numerical calculation is 
carried out to show the relation between A and T and U. In figure 1, we plot the K against 
A curve as well as the U against A curve. From the curves we can see T is a monotonically 
increasing function of A, while U is a decreasing function which is always less than one. 
From the definition of U, (equation (4)). cr < 1 implies that SL > 8,. i.e. the {S, 6) bonds 
are greater than (6.6) bonds. This is a natural result from our calculation, which is well 
identified by experiments. In figure 2, we plot curves for all the electronic levels in terms 
of the dimensionless e-ph coupling constant A. The energy levels are expressed in units of 
to, which are equal to re in OUT notation. We can see that the energy bandwidth becomes 
large when h increases. All the negative levels an decreasing functions of A, while all the 
positive levels are increasing ones. There is a crossover of the TsU level and the G. level 
nearA= 1.3. 

h 

Figure 1. The dimensionless parameten r (full cwe) and U (broken curve) against A. 

The above procedure also can be applied to calculate energy levels for the c60 molecule 
with six extra electrons doped in, CZ. The only thing we should notice in this procedure 
is that the summation in (20) should be taken over the state. Since an additional six 
electrons will fully occupy the LUMO state  TI^, they will not destroy icosahedral symmetry. 
We did the calculation and found U > 1 in this case, which implies 8, < 8,. i.e. the short 
bonds become longer than the long bonds. 

In summary, we have improved the analytical approach of [3] to include the effect of 
the electron-phonon interaction, which results in two kinds of bond length and the variation 
of the electronic structure. The difference of two kinds of bond length and the electronic 
HOMO-LUMO gap are proved to increase with the dimensionless electron-phonon coupling 
parameter. This conclusion is consistent with the results from a directly numerical solution 
by Harigaya [9] and You and co-workers [IO]. It is worthwhile to note that this analytical 
approach cannot be adopted to deal with the non-linear excitations, such as the polaron and 
self-trapped exciton of &, since the effect of the electrowphonon interaction will result 
in dynamical symmetry breaking of Ih as the molecule is excited or doped, which can only 
be resolved numerically through the BdG formalism [lo, I I]. 

= 
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a 
F b r e  2. The energy level of Hamiltonian H' in units of fo against 1. 
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