An analytic solution of C_{60} molecular orbitals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys.: Condens. Matter 55851
(http://iopscience.iop.org/0953-8984/5/32/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 11/05/2010 at 01:36

Please note that terms and conditions apply.

An analytic solution of C_{60} molecular orbitals

Chui-Lin Wang \dagger, Wen-Zheng Wang \ddagger and Zhao-Bin Su \ddagger
\dagger China Centre of Advanced Science and Technology (World Laboratory), PO Box 8730, Beijing 100080, China
\ddagger Institute of Theoretical Physics, Academia Sinica, PO Box 2735, Beijing 100080, China

Received 13 April 1993, in final form 2 June 1993

Abstract

The electronic structure of C_{60} molecular orbitals is calculated analytically, with the effects of electron-phonon interaction, and, consequently, two kinds of bond length, taken into account.

1. Introduction

The success in synthesizing macroscopic quantities of solid C_{60} [1] and the discovery of the superconductivity of its alloy compounds [2] have spurred great interest in the structural and electronic properties of the C_{60} molecule. Recently, Friedberg and co-workers [3] proposed an analytic approach to the calculation of the electronic structure of the π electrons in neutral C_{60}, using the well known $\mathrm{SO}(3)$ group to represent the symmetry group of C_{60}, I_{h}, and to diagonalize the TBA molecular Hamiltonian.

However, within their calculation, one unique bond length of C_{60} was assumed, which is inconsistent with the experimental observation showing two different bond lengths in the neutral C_{60} molecule [4]. The appearance of two kinds of bond length can be explained naturally within the theory of the electron-phonon (e-ph) interaction, as in the literature of conducting polymers [5]. In this paper, using the approach of Friedberg and co-workers, we have investigated analytically the effects of the e-ph interaction and, consequently, two kinds of bond lengths on the electronic structure.

2. Icosahedral symmetry

The structure of the molecule C_{60} has been determined explicitly through well known experiments [6]. There are 12 pentagons and 20 hexagons in C_{60}, which correspond to the 12 vertices and 20 faces of an icosahedron representing the proper icosahedral symmetry, I. The 120 -element icosahedral point group of C_{60}, I_{h}, is the cross product of the 60 -element icosahedral rotation group I and the inversion group C_{I}, i.e. $I_{h}=I \otimes C_{I}$. The inversion group C_{I} contains only the unit operator and the inversion operator, both of which commute with the 60 proper rotations in 1 . Thus the elements of the full I_{h} are generated by first operating on all the rotations of I with the unit operator of C_{I}, replicating the class structure of I. Then all the proper rotations of I are multiplied with the inversion of C_{l}, creating 60 new improper rotations. There are 15,10 and six twofold, threefold and fivefold symmetry axes, respectively, in the icosahedron. The proper rotation of I is divided into five classes, i.e. $E, 12 C_{5}, 12 C_{5}^{2}, 20 C_{3}$ and $15 C_{2}$. Therefore, there are five itreducible representations
($\mathbb{R s}$) in I. The multiplication table and character table have been given by Harter and Week [7].

According to [3] the proper icosahedral group I is a subgroup of $\mathrm{SO}(3)$, therefore our knowiedge of $\mathrm{SO}(3)$ can be used to represent I, and then to reduce the representations of $\mathrm{SO}(3)$ according to I. The correspondence relation of the spherical harmonics $Y_{l m}(\theta, \phi)$ of $\mathrm{SO}(3)$ and the IR of I has been given in [3]. Then the \mathbb{R} and its basis of A, T_{1} and H subspaces can be readily identified with the usual results of $S O(3)$ for $l=0,1,2$. But the $l=3 \mathbb{R}$ of $\operatorname{SO}(3)$ needs further decomposition into a quartet G and another triplet T_{3}. On the other hand, the one-to-one correspondence between the 60 elements of the I group and the 60 carbon atoms of the C_{60} molecule can be proposed to define a regular representation (RR) of I; meanwhile, the reduction coefficients of the RR according to the RR of I_{h} can be obtained [3].

3. Molecular orbitals of \mathbf{C}_{60}

Within the molecular orbital theory, the SSH-like Hamiltonian of C_{60} can be written as [8]

$$
\begin{equation*}
H=-\sum_{\langle i, j\rangle s}\left[t_{0}-\alpha\left(l_{i, j}-l_{1}\right)\right]\left(c_{i s}^{\dagger} c_{j s}+c_{j s}^{\dagger} c_{i s}\right)+\frac{1}{2} K \sum_{\langle i, j\rangle}\left(l_{i, j}-l_{1}\right)^{2} \tag{1}
\end{equation*}
$$

where $c_{i s}^{\dagger}\left(c_{i s}\right)$ are electron creation (annihilation) operators at site i of a C atom with spin s. The first term represents the electronic hopping term, where $\langle i, j\rangle$ means summation over the nearest-neighbour C atoms. The hopping integral is expanded up to a linear term proportional to the length deviation from l_{1}, where $l_{i, j}$ is the distance between i and j atoms, and α describes the strength of inter-site electron-phonon coupling. The other terms describe elastic potential energies; K is the stiffness constant of the bond-stretching spring; l_{1} is the length at which all springs are relaxed. It is convenient to introduce dimensionless parameters

$$
\begin{equation*}
\lambda=\frac{4 \alpha^{2}}{\pi K t_{0}} \quad \delta_{i, j}=\frac{2 \alpha l_{i, j}}{t_{0}} \quad \delta_{1}=\frac{2 \alpha l_{1}}{t_{0}} \tag{2}
\end{equation*}
$$

and to measure energy in units of t_{0}, i.e. $H / t_{0} \longrightarrow H$. To keep basic icosahedral symmetry in the ground state, we assume all the bond lengths $\delta_{i, j}$ between a pentagon and a hexagon are equal, $\delta_{i, j}=\delta_{\mathrm{L}}$, and the bond lengths $\delta_{i, j}$ between two hexagons are equal as well, $\delta_{i, j}=\delta_{\mathrm{s}}$. In the undoped case, the bond length δ_{L} is greater than δ_{s}, as will be seen below; we call δ_{L} the long bond and δ_{s} the short bond. Thus, the Hamiltonian can be rewritten as

$$
\begin{align*}
H=-\sum_{\{5,6]}[1 & \left.-\frac{1}{2}\left(\delta_{\mathrm{L}}-\delta_{1}\right)\right]\left(c_{i}^{\dagger} c_{j}+c_{j}^{\dagger} c_{i}\right)-\sum_{\{6,6\}}\left[1-\frac{1}{2}\left(\delta_{\mathrm{s}}-\delta_{1}\right)\right]\left(c_{i}^{\dagger} c_{j}+c_{j}^{\dagger} c_{i}\right)+\frac{60}{2 \pi \lambda}\left(\delta_{\mathrm{L}}-\delta_{1}\right)^{2} \\
& +\frac{30}{2 \pi \lambda}\left(\delta_{\mathrm{s}}-\delta_{1}\right)^{2} \tag{3}
\end{align*}
$$

The symbol $\{5,6\}$ means the summation is taken over all the bonds separating a hexagon from a pentagon and the symbol $\{6,6\}$ means the summation is taken over all the bonds separating two hexagons. There are in total $60\{5,6\}$ bonds and $30\{6,6\}$ bonds. Letting

$$
\begin{equation*}
\tau=1-\frac{1}{2}\left(\delta_{\mathrm{s}}-\delta_{1}\right) \quad \sigma=\frac{1-\frac{1}{2}\left(\delta_{\mathrm{L}}-\delta_{1}\right)}{1-\frac{1}{2}\left(\delta_{\mathrm{s}}-\delta_{1}\right)} \tag{4}
\end{equation*}
$$

and using icosahedral group element g to label the site i of the C atom, we get the electronic part of the Hamiltonian as .

$$
\begin{equation*}
H=\tau H^{\prime} \quad H^{\prime}=\sum_{g g^{\prime}} t_{g g^{\prime}}\left(c_{g}^{\dagger} c_{g^{\prime}}+c_{g^{\prime}}^{\dagger} c_{g}\right) \tag{5}
\end{equation*}
$$

and
$t_{g g^{\prime}}=\langle g| H^{\prime}\left|g^{\prime}\right\rangle= \begin{cases}-\sigma & \text { for a bond }\left(g, g^{\prime}\right) \text { between a hexagon and a pentagon } \\ -1 & \text { for a bond }\left(g, g^{\prime}\right) \text { between two hexagons } \\ 0 & \text { otherwise. }\end{cases}$
Following [3], define a new basis $|d, m \lambda\rangle$ in terms of the \mathbb{R} of I as

$$
\begin{equation*}
\langle g \mid d, m \lambda\rangle \equiv \sqrt{\frac{d}{G}} T_{m \lambda}^{d}(\alpha, \beta, \gamma) \tag{7}
\end{equation*}
$$

where $d=1,3, \overline{3}, 4$ and 5 is the dimension of the R and $G=60$ is the dimensionality of the RR. The unitary condition of the above transformation is

$$
\begin{align*}
& \sum_{g}\langle d, m \lambda \mid g\rangle\left\langle g \mid d^{\prime}, m^{\prime} \lambda^{\prime}\right\rangle=\delta_{d d^{\prime}} \delta_{m m^{\prime}} \delta_{\lambda \lambda^{\prime}} \\
& \sum_{d, m \lambda}\langle g \mid d, m \lambda\rangle\left\langle d, m \lambda \mid g^{\prime}\right\rangle=\delta_{g g^{\prime}} \tag{8}
\end{align*}
$$

For $d=1,3$ and 5 , the matrices $T_{m \lambda}^{d}(\alpha, \beta, \gamma)$ are simply the standard transformation matrices in a rigid body, i.e. the \mathbb{R} matrices of $\operatorname{SO}(3), T_{m \lambda}^{d}(\alpha, \beta, \gamma)=D_{m \lambda}^{J}(\alpha, \beta, \gamma)$ with $J=\frac{1}{2}(d-1)$. For $d=\overline{3}$ and 4 , the matrices $T_{m \lambda}^{d}$ result from the block diagonalization of $D_{m \lambda}^{J}$ with $J=3$ according to the I group. Therefore, with the new basis $|d, m \lambda\rangle$, we have the matrix element of the Hamiltonian transformed to

$$
\begin{align*}
&\langle d, m \lambda| H^{\prime}\left|d^{\prime}, m^{\prime} \lambda^{\prime}\right\rangle=\sum_{g g^{\prime}}\langle d, m \lambda \mid g\rangle\langle g| H^{\prime}\left|g^{\prime}\right\rangle\left\langle g^{\prime} \mid d^{\prime}, m^{\prime} \lambda^{\prime}\right\rangle \\
&=-\sum_{g}\langle d, m \lambda \mid g\rangle\left\langle g f_{a} \mid d^{\prime}, m^{\prime} \lambda^{\prime}\right\rangle-\sigma \sum_{b, g}\langle d, m \lambda \mid g\rangle\left\langle g f_{b} \mid d^{\prime}, m^{\prime} \lambda^{\prime}\right\rangle \\
&=-\delta_{d d^{\prime}} \delta_{m m^{\prime}} T_{\lambda \lambda^{\prime}}^{d}\left(f_{a}\right)-\sigma \delta_{d d^{\prime}} \delta_{m m^{\prime}} \sum_{b} T_{\lambda \lambda^{\prime}}^{d}\left(f_{b}\right) \tag{9}
\end{align*}
$$

Here $g^{\prime}=g f_{a(b)}$, where $f_{a(b)}$ is the proper rotation a or b to rotate g to its nearest neighbours through $\{6,6\}$ and $\{5,6\}$ bonds, respectively. We have used the relation in (7) and (8). Letting

$$
\begin{equation*}
M^{d}=-T^{d}\left(f_{a}\right)-\sigma \sum_{b=1,2} T^{d}\left(f_{b}\right) \tag{10}
\end{equation*}
$$

the eigenvalue problem of the model Hamiltonian can be solved through the diagonalization of the low-dimensional matrices M^{d} of the above equation. For the A_{g} representation, we can immediately obtain its eigenvalue $\epsilon=-1-2 \sigma$ from (10). In practice, it tums out that we need only to diagonalize no more than 3×3 matrices after further block diagonalization through the $\operatorname{SU}(2)$ representation, which can readily be done analytically.

Here we take the decomposition for the $l=3$ representation of $S O(3)$ according to I. The basic functions for the $l=3$ representation of $S O(3)$ can be redefined so that the representation will be decomposed into $G \bigoplus T_{3}$, according to icosahedral symmetry I mentioned in section 2 :

$$
\begin{align*}
G_{-2}=\sqrt{\frac{2}{5}} Y_{3,-2}+\sqrt{\frac{3}{5}} Y_{3,3} & G_{-1}=Y_{3,-1} & G_{1}=Y_{3,1} & G_{2}
\end{align*}=-\sqrt{\frac{3}{5}} Y_{3,-3}+\sqrt{\frac{2}{5}} Y_{3,2}, ~=\sqrt{\frac{3}{5}} Y_{3,-2}-\sqrt{\frac{2}{5}} Y_{3,3} \quad T_{0}=Y_{3,0} \quad T_{1}=\sqrt{\frac{2}{5}} Y_{3,-3}+\sqrt{\frac{3}{5}} Y_{3,2} .
$$

The above basic functions can be further redefined in terms of real variables:

$$
\begin{array}{ll}
\mathcal{G}_{1}=\frac{1}{\sqrt{2}}\left(G_{-2}+G_{2}\right) & \mathcal{G}_{2}=-\frac{1}{\sqrt{2}}\left(G_{-1}-G_{1}\right) \\
\mathcal{G}_{3}=\frac{\mathrm{i}}{\sqrt{2}}\left(G_{-1}+G_{1}\right) & \mathcal{G}_{4}=-\frac{\mathrm{i}}{\sqrt{2}}\left(G_{-2}-G_{2}\right) \tag{12}\\
\mathcal{T}_{1}=\frac{1}{\sqrt{2}}\left(T_{-1}+T_{1}\right) & \mathcal{T}_{1}=T_{0} \quad T_{3}=-\frac{\mathrm{i}}{\sqrt{2}}\left(T_{-1}-T_{1}\right) .
\end{array}
$$

The M matrix in the G representation then becomes

$$
M=\left(\begin{array}{cccc}
\frac{2}{\sqrt{5}}-2 \sigma \cos 2 \zeta & \frac{1}{\sqrt{5}} & 0 & 0 \tag{13}\\
-\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}}-2 \sigma \cos \zeta & 0 & 0 \\
0 & 0 & -2 \sigma \cos \zeta & -1 \\
0 & 0 & -1 & -2 \sigma \cos 2 \zeta
\end{array}\right)
$$

and the M matrix in the T_{3} representation is

$$
M=\left(\begin{array}{ccc}
-\frac{1}{\sqrt{5}}-2 \sigma \cos 2 \zeta & -\frac{2}{\sqrt{5}} & 0 \tag{14}\\
-\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}-2 \sigma & 0 \\
0 & 0 & 1-2 \sigma \cos 2 \zeta
\end{array}\right)
$$

where $\zeta=2 \pi / 5$. We also notice that $\cos \zeta=\frac{1}{4}(\sqrt{5}-1)$ and $\cos 2 \zeta=-\frac{1}{4}(\sqrt{5}+1)$.
Similarly, the M matrices in the T_{1} representation and the H representation are easily obtained; respectively, they are

$$
\begin{gather*}
M=\left(\begin{array}{cccc}
\frac{1}{\sqrt{5}}-2 \sigma \cos \zeta & -\frac{2}{\sqrt{5}} & 0 \\
-\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}}-2 \sigma & 0 \\
0 & 0 & 1-2 \sigma \cos \zeta
\end{array}\right) \tag{15}\\
M=\left(\begin{array}{ccccc}
-\frac{3}{5}-2 \sigma \cos 2 \zeta & -\frac{2}{5} & -\frac{2 \sqrt{3}}{5} & 0 & 0 \\
-\frac{2}{5} & -\frac{3}{5}-2 \sigma \cos \zeta & \frac{2 \sqrt{3}}{5} & 0 & 0 \\
-\frac{2 \sqrt{3}}{5} & \frac{2 \sqrt{3}}{5} & \frac{1}{5}-2 \sigma & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{5}}-2 \sigma \cos \zeta & -\frac{2}{\sqrt{5}} \\
0 & 0 & 0 & -\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}}-2 \sigma \cos 2 \zeta
\end{array}\right) . \tag{16}
\end{gather*}
$$

Table 1. The analytic solution of the molecular orbitals of $\mathrm{C}_{60} \cdot \theta=\frac{1}{3} \arccos \left(-\frac{q}{2}\right), r=\left(\frac{10}{9} \sigma^{2}-\frac{4}{9} \sigma+\frac{4}{9}\right)^{3 / 2}, q=\frac{25}{27} \sigma^{3}+\frac{4}{9} \sigma^{2}-\frac{8}{9} \sigma+\frac{16}{27} \cdot \epsilon$ is the corresponding eigenvalue; N is the normal factor belong to each eigenvector.

Rep.	Eigenvalue ϵ at $\sigma \neq 1$	Eigenvalue ϵ at $\sigma=1$	Eigenvector ψ_{0}
$T_{3 g}$	$1+\frac{\sigma}{2}(1+\sqrt{5})$	$\frac{1}{2}(3+\sqrt{5})$	(0,0, 1)
G_{H}	$\frac{1}{2}\left(\sigma+\sqrt{5 \sigma^{2}+8 \sigma+4}\right)$	$\frac{1}{2}(1+\sqrt{17})$	$\frac{1}{N}\left(\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}-\sigma \frac{1+\sqrt{5}}{2}+\epsilon, 0,0\right)$
G_{8}	$\frac{1}{2}\left(\sigma+\sqrt{5 \sigma^{2}+4}\right)$	2	$\frac{1}{N}\left(0,0,-1, \frac{\sqrt{5}-1}{2} \sigma+\epsilon\right)$
H_{u}	$\frac{1}{2}\left(\sigma+\sqrt{5 \sigma^{2}-4 \sigma+4}\right)$	$\frac{1}{2}(1+\sqrt{5})$	$\frac{1}{7}\left(0,0,0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}-\sigma \frac{\sqrt{5}-1}{2}-\epsilon\right)$
T_{34}	$\frac{1}{2}\left[-\frac{3-\sqrt{5}}{2} \sigma+\sqrt{\left.\frac{1}{2}(15+5 \sqrt{5}) \sigma^{2}-2(\sqrt{5}+1) \sigma+4\right]}\right.$	$\frac{1}{2}\left(-\frac{3-\sqrt{5}}{2}+\sqrt{\frac{19+\sqrt{5}}{2}}\right)$	$\frac{1}{W}\left(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}-\sigma \frac{1+\sqrt{5}}{2}+\epsilon, 0\right)$
H_{8}	$-\left[\frac{1+\sigma}{3}+2 \sqrt[3]{r} \cos \left(\theta+\frac{2 \pi}{3}\right)\right]$	$\frac{1}{2}(-1+\sqrt{13})$	$\begin{aligned} & \frac{1}{N}\left(\epsilon^{2}+\epsilon\left(\frac{2}{3}+\sigma \frac{\sqrt{5}+3}{2}\right)+\sigma^{2}(\sqrt{5}-1)+\sigma \frac{13-\sqrt{5}}{10}-\frac{3}{3},\right. \\ & \left.-\frac{2}{3} \epsilon-\frac{4}{3} \sigma-\frac{2}{3},-\frac{2 \sqrt{3}}{3}\left(1+\frac{\sqrt{3}-1}{2} \sigma+\epsilon\right), 0,0\right) \end{aligned}$
T_{18}	1- $\frac{9}{2}(\sqrt{5}-1)$	$\frac{1}{2}(3-\sqrt{5})$	$(0,0,1)$
$T_{\text {lu }}$	$\frac{1}{2}\left[-\frac{3+\sqrt{5}}{2} \sigma+\sqrt{\left.\frac{1}{2}(15-5 \sqrt{5}) \sigma^{2}+2(\sqrt{5}-1) \sigma+4\right]}\right.$	$\frac{1}{2}\left(-\frac{3+\sqrt{5}}{2}+\sqrt{\frac{19-\sqrt{5}}{2}}\right)$	$\frac{1}{1}\left(-\frac{1}{\sqrt{5}}-2 \sigma-\epsilon, \frac{2}{\sqrt{5}}, 0\right)$
H_{H}	$\frac{1}{2}\left(\sigma-\sqrt{5 \sigma^{2}-4 \sigma+4}\right)$	$\frac{1}{2}(1-\sqrt{5})$	$\frac{1}{N}\left(0,0,0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}-\sigma \frac{\sqrt{5}-1}{2}-\epsilon\right)$
H_{8}	$-\left[\frac{1+\sigma}{3}+2 \sqrt[3]{r} \cos \left(\theta+\frac{4 \pi}{3}\right)\right]$	-1	$\begin{aligned} & \frac{1}{N}\left(\epsilon^{2}+\epsilon\left(\frac{2}{5}+\sigma \frac{\sqrt{5}+3}{2}\right)+\sigma^{2}(\sqrt{5}-1)+\sigma \frac{13-\sqrt{5}}{10}-\frac{3}{3},\right. \\ & \left.-\frac{2}{3} \epsilon-\frac{4}{3} \sigma-\frac{2}{3},-\frac{2 \sqrt{3}}{3}\left(1+\frac{\sqrt{5}-1}{2} \sigma+6\right), 0,0\right) \end{aligned}$
G_{8}	$\frac{1}{2}\left(\sigma-\sqrt{5 \sigma^{2}+4}\right)$	-1	$\frac{1}{N}\left(0,0,-1, \frac{\sqrt{5}-1}{2} \sigma+\epsilon\right)$
$\boldsymbol{G}_{\boldsymbol{H}}$	$\frac{1}{2}\left(\sigma-\sqrt{5 \sigma^{2}+8 \sigma+4}\right)$	$\frac{1}{2}(1-\sqrt{17})$	$\frac{1}{N}\left(\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}-\sigma \frac{1+\sqrt{5}}{2}+\epsilon, 0,0\right)$
${ }^{\text {T3u }}$	$\frac{1}{2}\left[-\frac{3-\sqrt{5}}{2} \sigma-\sqrt{\left.\frac{1}{2}(15+5 \sqrt{5}) \sigma^{2}-2(\sqrt{5}+1) \sigma+4\right]}\right.$	$\frac{1}{2}\left(-\frac{3-\sqrt{3}}{2}-\sqrt{\frac{19+\sqrt{5}}{2}}\right)$	$\frac{1}{N}\left(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}-\sigma \frac{1+\sqrt{5}}{2}+\epsilon, 0\right)$
H_{8}	$-\left(\frac{1+r}{3}+2 \sqrt[3]{r} \cos \theta\right)$	$\frac{1}{2}(-1-\sqrt{13})$	$\begin{aligned} & \frac{1}{N}\left(\epsilon^{2}+\epsilon\left(\frac{2}{3}+\sigma \frac{\sqrt{5}+3}{2}\right)+\sigma^{2}(\sqrt{5}-1)+\sigma \frac{13-\sqrt{5}}{10}-\frac{3}{3},\right. \\ & \left.-\frac{2}{5} \epsilon-\frac{4}{3} \sigma-\frac{2}{3},-\frac{2 \sqrt{3}}{3}\left(1+\frac{\sqrt{3}-1}{2} \sigma+\epsilon\right), 0,0\right) \end{aligned}$
T_{14}	$\frac{1}{2}\left[-\frac{3+\sqrt{5}}{2} \sigma-\sqrt{\left.\frac{1}{2}(15-5 \sqrt{5}) \sigma^{2}+2(\sqrt{5}-1) \sigma+4\right]}\right.$	$\frac{1}{2}\left(-\frac{3+\sqrt{5}}{2}-\sqrt{\frac{19-\sqrt{5}}{2}}\right)$	$\frac{1}{N}\left(-\frac{1}{\sqrt{3}}-2 \sigma-\epsilon, \frac{2}{\sqrt{3}}, 0\right)$
A_{8}	$-1-2 \sigma$	-3	1

The solutions of the eigenvalue problems for (13)-(16) are given in table 1. In table 1, we list eigenvalues ϵ of the M matrix at $\sigma \neq 1$ as well as $\sigma=1$. The M matrices are block matrices of the electronic part of the Hamiltonian H^{\prime}, so the eigenvalues for the original Hamiltonian H should be $t_{0} \tau \epsilon$. Eigenvectors ψ_{0} of the M matrices are also listed in table 1 . For clarity, we take the second row as an illustrative example. The eigenvalue for the G_{u} representation is $\epsilon=\frac{1}{2}\left(\sigma+\sqrt{5 \sigma^{2}+8 \sigma+4}\right)$; when $\sigma=1$ it reduces to $\sigma=\frac{1}{2}(1+\sqrt{17})$. The eigenvector ψ_{0} of G_{u} has four components

$$
\frac{1}{N}\left(\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}-\sigma \frac{1+\sqrt{5}}{2}+\epsilon, 0,0\right)
$$

where

$$
N^{2}=\frac{1}{5}+\left(-\frac{2}{\sqrt{5}}-\sigma \frac{1+\sqrt{5}}{2}+\epsilon\right)^{2} .
$$

The wavefunction of H can be obtained through the formula

$$
\begin{equation*}
\Psi_{\lambda}^{d}(g)=\sqrt{\frac{d}{G}} \sum_{\lambda^{\prime}} \psi_{0 \lambda^{\prime}}^{d} T_{\lambda^{\prime} \lambda}^{d}\left(g^{-1}\right) \tag{17}
\end{equation*}
$$

which can be easily verified to satisfy the orthogonal relations

$$
\begin{equation*}
\sum_{g} \Psi_{\lambda}^{d *}(g) \Psi_{\lambda^{\prime}}^{d^{\prime}}(g)=\delta_{\lambda \lambda^{\prime}} \delta_{d d^{\prime}} \tag{18}
\end{equation*}
$$

For the G_{u} representation, as an example, we can obtain four degenerate wavefunctions corresponding to the eigenvalue $\epsilon=\frac{1}{2}\left(\sigma+\sqrt{5 \sigma^{2}+8 \sigma+4}\right)$ through (17).

4. Self-consistent solutions

In section 3, we have solved the eigenvalue problems of the M matrices in terms of the parameters σ and τ. The values of these parameters can be determined by a Bogoliubovde Gennes (BdG) equation [5] for a given dimensionless e-ph coupling constant λ :

$$
\begin{equation*}
\frac{\delta\left\langle\Psi_{x}\right| H^{\prime}\left|\Psi_{x}\right\rangle}{\delta \delta_{i, j}}=0 \tag{19}
\end{equation*}
$$

where Ψ_{x} is a multi-electron state of the system. Since we only have two kinds of bond length, δ_{s} and δ_{L} in our case, we can only get two equations from (19):

$$
\begin{align*}
& (1-\sigma \tau)-\frac{\pi \lambda}{120} \sum_{\left.\lambda^{\prime} \lambda \mid d\right\}} \psi_{0 \lambda}^{d}\left(\frac{\partial M^{d}}{\partial \sigma}\right)_{\lambda \lambda^{\prime}} \psi_{0 \lambda^{\prime}}^{d}=0 \\
& (1-\tau)+2 \sigma(1-\tau \sigma)-\frac{\pi \lambda}{60} \sum_{\{d\}} \epsilon^{d} d=0 \tag{20}
\end{align*}
$$

where the summation over $\{d\}$ is taken over the occupied representation. In the undoped case, 30 energy levels from the lowest A_{g} state to the hомо H_{u} states are occupied. The
factor of two for spin is already taken out from the summations. The expressions for ϵ^{d}, $\psi_{0 \lambda}^{d}$ and M^{d} can be found in table 1 and (13)-(16). Equation (20) is a system of non-linear equations of two variables, which cannot be solved analytically. A numerical calculation is carried out to show the relation between λ and τ and σ. In figure 1 , we plot the τ against λ curve as well as the σ against λ curve. From the curves we can see τ is a monotonically increasing function of λ, while σ is a decreasing function which is always less than one. From the definition of σ, (equation (4)), $\sigma<1$ implies that $\delta_{\mathrm{L}}>\delta_{\mathrm{s}}$, i.e. the $\{5,6\}$ bonds are greater than $\{6,6\}$ bonds. This is a natural result from our calculation, which is well identified by experiments. In figure 2 , we plot curves for all the electronic levels in terms of the dimensionless e-ph coupling constant λ. The energy levels are expressed in units of t_{0}, which are equal to $\tau \in$ in our notation. We can see that the energy bandwidth becomes large when λ increases. All the negative levels are decreasing functions of λ, while all the positive levels are increasing ones. There is a crossover of the $T_{3 k}$ level and the G_{u} level near $\lambda=1.3$.

Figure 1. The dimensionless parameters τ (full curve) and σ (broken curve) against λ.
The above procedure also can be applied to calculate energy levels for the C_{60} molecule with six extra electrons doped in, C_{60}^{-6}. The only thing we should notice in this procedure is that the summation in (20) should be taken over the $T_{1 u}$ state. Since an additional six electrons will fully occupy the LUMO state $T_{1 u}$, they will not destroy icosahedral symmetry. We did the calculation and found $\sigma>1$ in this case, which implies $\delta_{\mathrm{L}}<\delta_{\mathrm{s}}$, i.e. the short bonds become longer than the long bonds.

In summary, we have improved the analytical approach of [3] to include the effect of the electron-phonon interaction, which results in two kinds of bond length and the variation of the electronic structure. The difference of two kinds of bond length and the electronic HOMO-LUMO gap are proved to increase with the dimensionless electron-phonon coupling parameter. This conclusion is consistent with the results from a directly numerical solution by Harigaya [9] and You and co-workers [10]. It is worthwhile to note that this analytical approach cannot be adopted to deal with the non-linear excitations, such as the polaron and self-trapped exciton of C_{60}, since the effect of the electron-phonon interaction will result in dynamical symmetry breaking of I_{h} as the molecule is excited or doped, which can only be resolved numerically through the BdG formalism [10,11].

Figure 2. The energy level of Hamiltonian H^{\prime} in units of t_{0} against λ.

Acknowledgments

The authors are indebted to Professor T D Lee and Dr H C Ren for stimulating discussions. This work was partly supported by the National Natural Science Foundation of China.

References

[1] Kratschmer W, Fostiropoulos K and Huffman D R 1990 Chem. Phys. Lett. 170167
[2] Tanigaki K et al 1991 Nature 352222
Rosseinsky M J et al 1991 Phys. Rev. Lett. 662830
[3] Friedberg F, Lee T D and Ren H C 1992 Phys. Rev. B 4614150
[4] Yannoni C S et al 1991 J. Am. Chem. Soc. 1133190
[5] Yu L 1988 Solitons and Polarons in Conducting Polymers (Singapore: World Scientific)
[6] Fleming M F et al 1990 Mater. Res. Soc. Symp. Proc. 106691
[7] Harter W G and Weeks D E 1989 J. Chem. Phys, 904727
[8] Su W P. Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1689; 1980 Phys. Rev. $B 22$ 2209; 1983 Phys. Rev. B 28 1138(E)
[9] Harigaya K 1992 Phys. Rev. B 4513637
[10] You W M, Wang C L, Zhang F C and Su Z B 1993 Phys. Rev. B 474765
[11] You W M. Wang C L and Su Z B 1993 Preprint

